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 The general question of forest management can be stated as follows. Suppose the planner
 of a piece of forest land obtains utility in any time period from the timber content of trees harvested
 in that period. If the planner wishes to maximize the discounted sum of such utilities starting
 from any initial forest, what pattern of planting and harvesting trees should it follow? This paper
 provides a systematic analysis to answer the above question. In particular, the optimal solution
 is related to the Faustmann periodic solution and the sustained yield solution, which are prominent

 in the forestry literature.

 1. INTRODUCTION

 A well-known problem in capital theory is to find the correct time to stop a "pure aging

 process". This is illustrated most often with the following "tree-cutting example". Sup-

 pose the value of timber from a tree is related to its age (a) according to a function,ft
 and a discount rate of p > 0 is given. At what age should a tree (or a stand of trees of

 the same vintage) be cut down to maximize the present value of the timber content?
 The answer to this question, proposed by Jevons (1871), Wicksell (1911) and others,

 can be stated as follows: cut the tree at an age, at which the increase in value of timber

 content of the standing tree over an additional unit time-interval equals the interest that

 can be earned over an additional unit time interval, if the revenue from cutting the tree

 is invested at an interest rate p.

 From the point of view of the economics of forestry, the above solution (and, indeed,

 the above question) is missing something. More precisely, the solution is based on the
 assumption that the land on which the stand of trees was growing is not used after the

 trees are cut down. Consequently, it fails to encompass an important aspect of the "forest
 rotation problem". Once trees are removed from a given area, the land is available for

 new forest growth. Clearly, the longer the felling of the existing forest is delayed, the

 longer it takes to acquire revenues from future harvests. The opportunity cost of utilizing

 the forest site for the existing stand of trees must be considered. Taking this reforestation
 aspect into account, Faustmann (1849) noted that the question to be asked is the following.
 Assuming that one had an empty tract of land and one were interested in maximizing

 the discounted sum of the value of timber content of trees harvested (timber being
 evaluated at a constant price), what pattern of planting and harvesting trees should one
 follow?

 Faustmann (1849) suggested the following answer to this question. A stand of trees
 should be cut at an age at which the increase in the value of the timber content of the
 standing trees over an additional unit time interval equals the sum of the following two
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 264 REVIEW OF ECONOMIC STUDIES

 factors (i) the interest that can be earned if the revenue from cutting the trees is invested

 at an interest rate, p; (ii) the interest that can be earned on the "site value" [that is, on

 the present value of the stream of all future revenues on this particular site]. Following

 Faustmann, this model has been discussed extensively by economists like Gaffney (1960),

 Pearse (1967) and Scott (1972). More thorough studies on the economics of forestry are

 contained in Schreuder (1968), Gregory (1972) and Wan (1978). A survey of several

 issues in the forestry literature is contained in Samuelson (1976). A very readable updated

 account of the literature is contained in Dasgupta (1982).

 One can pose the question of forest management in even more general terms than

 Faustmann did. Suppose the owner of a piece of land, or the planner of a piece of forest

 land, obtains utility in any time period, which is determined by the timber content of

 trees harvested in that period. If one wishes to maximize the discounted sum of such
 utilities starting from any initial forest what pattern of planting and harvesting trees

 should it follow?

 This question is a more general one in two respects, when compared to that posed

 by Faustmann. First, if the utility function is linear, one obtains the objective function

 of Faustmann as a special case. However, one can also examine the optimal decision of
 a monopolistic owner of forest land, who could have a strictly concave profit function.
 Also, the objective function would be applicable to the case of a planner concerned with
 the maximization of social welfare of an economy, from a tract of its forest land, where
 social welfare is measured by the discounted sum of one-period utilities. (These utilities
 could be derived from a linear or a non-linear utility function.)

 Second, it is possible under this reformulation to consider the case where the owner
 or planner inherits a standing forest. Depending on the "initial forest", the optimal

 pattern of planting and harvesting could be different (and indeed is, as we show in this
 paper, even if we stick to the linear utility function used by Faustmann).

 Our purpose, then, in this paper is to provide a systematic analysis to answer the
 general question of forest management posed above. For this purpose, we set up a model
 of forestry in Section 2. In Section 3, we prove the existence of a stationary forest which

 is optimal (called an Optimal Stationary Program, or for short, an OSP). We also prove

 the existence of a stationary shadow price, which "supports" an OSP in the sense that
 at this price, the sum of utility plus (discounted) intertemporal profit is maximized at the
 OSP among all feasible activities. Our analysis shows that an OSP is one in which the

 total plot of land is split into M equal sub-plots, with one sub-plot each containing input
 of trees of age a (a = 0, 1, . . ., M- 1). In each period, trees of age M are cut down, and
 the sub-plot so cleared is planted with seedlings (age zero trees). It is of interest to note
 that the age at which trees are cut at an OSP, is the same as the age at which trees are
 cut in a solution to the above-mentioned Faustmann problem (this problem is precisely
 formulated in (3.2)). It is also of interest to note that the set of OSPs (for, there may be
 more than one) is invariant under a change in the utility function.

 In Section 4, we consider the case of a linear utility function and show that if the

 plot of land is initially empty, then the following "periodic solution", suggested by
 Faustmann, is optimal. The whole land is planted with seedlings initially, and all seedlings

 are allowed to grow to an age M (where M is a solution to the Faustmann problem
 (3.2)), at which time the whole forest is cut down and replanted with seedlings. (This
 process is repeated indefinitely.) If the plot of land has initially a standing forest then
 we show that the following rule is optimal. Initially, cut all trees of age M or more

 (where, again, M is a solution to the Faustmann problem (3.2)); thereafter, cut a tree if
 and only if it is of age M. Note that this means that if we think of the land as divided
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 MITRA & WAN ECONOMICS OF FORESTRY 265

 into sub-plots, according to the age of trees standing on them, then each sub-plot follows
 the periodic Faustmann solution.

 In Section 5, we examine the question of uniqueness of an OSP in our framework.
 First, we provide examples in which multiple OSPs exist. Then, by assuming that there
 is a unique solution to the Faustmann problem (Problem (3.2)), we prove that there is
 only one OSP.

 Finally, in Section 6, we consider the case of a strictly concave utility function (and
 assume that there is a unique OSP). We provide an example where starting from virgin
 land it is optimal to follow a periodic Faustmann solution. We also provide an example

 where starting from non-virgin land, it is optimal to follow a periodic solution. These
 examples demonstrate that there may not be any tendency of optimal programs to converge
 to the unique OSP asymptotically when the utility function is strictly concave. In fact,
 this study together with Mitra-Wan (1981) show that the asymptotic properties of optimal
 programs are similar when the utility function is linear, regardless of whether there is
 positive or zero discounting. But these properties may be quite dissimilar, when the utility
 function is strictly concave, depending on whether future utilities are undiscounted (in
 which case we have the "turnpike property", with the unique OSP as the "turnpike"),
 or positively discounted (in which case, a "turnpike property" need not hold, and periodic
 optimal solutions are definitely possible).

 2. THE MODEL

 2a. Production

 Consider a framework in which the timber content of a tree is related to the age of the

 tree, through a production function, f, from R+ to R,. Given the age of a tree (a), the
 timber content of the tree is given by f(a), for a -0.

 The following assumptions on f are used in the paper:

 Assumption 1. f(a) = 0 for 0-'- a- a, for some a _ 1.

 Assumption 2. f is continuous for a '-a, and there is a positive integer N> a, such
 that (i) f(a) is increasing for a ' a < N; (ii) f(a) is decreasing for a > N.

 Assumption 3. f is concave for a_ a.

 The graph of a production function satisfying Assumptions 1-3 is represented in Figure

 l(a). A graph of a production function satisfying Assumptions 1 and 2, but violating
 Assumption 3 is represented in Figure l(b).

 2b. Some notation

 In specifying our notation, N will refer to the positive integer of Section 2a.
 Let d denote the first unit vector, and e the (N+ 1)-th unit vector of RN?l, i.e.

 d = (1,0. . ., 0), e = (0, 0,..., 1) in RN+?. Let ,u and v be the sum vectors in R N and
 R N+I respectively. Let IN denote the N x N identity matrix. Define a (N+ 1) x (N + 1)
 matrix

 A[ ] 1
 IN 0_ '
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 f(a) f(a)

 0 a N a 0 a N a

 (a) (b)

 FIGURE 1

 Define a Nx(N+1) matrix B by

 B=[O IN].

 Define a set D as follows: D= [x in R N+ ': vx = 1, ex = 0]. Define a set E as follows:
 E=[(x,y) in DXR+N+I1: y = Ax]. Note that for (x, y) in E, vy = 1, and dy = O. Finally,
 define a set F as follows: F = [(x, z) in D x D: B(Ax - z) _ 0]. Note that if (x, z) is in

 F, then AB(Ax - z) = dz.

 2c. Programs

 Before providing rigorous definitions, we first provide an informal discussion of feasible

 programs. This might be helpful, since the mechanics of the model are rather simple,
 while this information, when written in the compact mathematical notation introduced
 above, may not appear to be so, at least at first glance.

 Let x, = [x,(0), . . . , x,(N)]; then x,(a), for a = 0, 1, . . ., N, is the land occupied by
 input of trees of age a, at the end of time period t. The total amount of land available

 for forestry in the economy is assumed to be one unit, so vx, = 1. Also, for any reasonable
 objective function for the economy, trees will never be allowed to grow beyond age N;
 we therefore take this as a condition of feasibility itself. That is, without loss of generality,

 feasible programs can be restricted to those satisfying x,(N) = 0, or equivalently, ex, = 0.

 Thus, xt belongs to the set D for each t.
 Let yt+ I = [y+ 1(?), . . . , yt+ I (N)]; then y,+ (a), for a = 0, 1, . . ., N, is the land occupied

 by output of trees of age a, at the end of time period (t+ 1). Since in one period a tree

 of age (a) becomes a tree of age (a+1), so yt?,(1)=xt(O);... ;yt?,(N)=xt(N-1).
 Furthermore, Yt+I(0) is, by definition, equal to zero, that is, dyt+I = 0. Thus, we have
 Yt+1 = Axt, and (xt, yt+i) is in the set E. Note that as a consequence we have Pyt+? = 1,
 which simply reflects the fact that the total amount of land available for forestry is one unit.

 At the end of time period (t + 1), two things are supposed to happen instantaneously,
 by the nature of our "point-input, point-output" framework. First, trees of different ages
 are cut down. Second, new seedlings (trees of age zero) are planted, in the cleared areas.
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 MITRA & WAN ECONOMICS OF FORESTRY 267

 Let x,+l = [x,+ I (?),.. ., x,+ I (N)]; then x,+l (a), for a = 0, 1,..., N, is the land occupied
 by input of trees of age a, at the end of time period (t+ 1). Then, clearly, y,+t(l) ?
 xt+1 (1); ... ; yt+ I(N) ' xt+1(N). This means that B(yt+I-x - )x 0.

 Let ct+l = [ct?,( 1) ..., ct+I(N)]; then ct+I(a), for a = 1,..., N, is the land released
 by harvest of trees of age a, at the end of time period (t+ 1). Note then that ct,?(a) is
 precisely measured by (yt?,(a)-xt?,(a)) for a= 1,..., N. Thus we have ct+,=
 B(y+I - xt+1). Since input of trees of age zero at the end of time period (t + 1) occupy
 the land released by all harvests, so xt,+(O) = ct,+(1)+* + c,+l(N); that is Act,l = dxt,+.

 Keeping the above story in mind, we can now provide the formal definition of a
 feasible program.

 A feasible program from x in D, is a sequence (xt, Yt+i) satisfying

 x0=x, (xt,yt+I)EE, B(yt+I-xt+1)_0 for t-O (2.1)

 Associated with a feasible program (xt, Yt+i) from x in D, is a sequence (ct?,) such that

 ct,+=B(yt?,-xt?,) fort?'-O. (2.2)

 By the properties of sets E and F noted in Section 2b, we have

 vyt+1 = 1, dyt+I =O, juct,+=dxt+l fort?'-O. (2.3)

 A feasible program (xt, Yt+i) is stationary if xt = xt+I for t ?-0. In this case, we denote the
 stationary levels of xt and Yt+ respectively by x and y, and the stationary value of ct+I
 by c; that is, c = B(y - x) = B(Ax - x). The feasible program itself is then denoted by (x, y).

 2d. Preferences

 Preferences of the planner are represented by a utility function, u, from R+ to R, and a
 discount factor, 8, in (0, 1). Thus, the utility of the economy in any time period, based
 on the timber content of trees harvested in that period, is determined by the function, u.
 The discount factor, 8, depicts the time preference of the planner. The following assump-
 tions on u are used in the paper:

 Assumption 4. u is strictly increasing.

 Assumption 5. u is continuous on R+ and twice continuously differentiable on R++.

 Assumption 6. u is concave.

 If u(k) = mk for k_ ?0 where m > 0, then the utility function is called linear.
 Define Q=[f(l),...,f(N)]. A feasible program (x*,y* +) from x in D, is called

 optimal if

 Et 1 5 -u (Q Q*), 5t-l u (Qct) (2.4)

 for every feasible program (xt, Yt+i) from x in D.
 We turn now to an interpretation of this definition. For a feasible program (xt, Yt+?)

 from x in D, c,(a) for a = 1, . . ., N is the land released by harvest of trees of age a, at
 the end of time period t. Assuming that the trees on a plot of land are proportional to
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 the amount of land (the factor of proportionality being unity by suitable choice of units
 in which the number of trees are measured), the timber content obtained by harvest at

 the end of time period t is given by [f(l ) c,( 1) + +f( N) c,( N)], or equivalently by Qc,.
 The function, u, then measures the utility obtained from this timber content at the end

 of time period t, u(Qc,). Implicitly, costs of planting and harvesting trees are being
 assumed to be zero, so that these do not enter as arguments in the utility function. If

 the utilities obtained in successive periods are discounted at the discount factor, 8, then

 one can define an optimal program (x*, Y*+ ) to be one which maximizes the sum of such
 discounted utilities; that is, by (2.4).

 3. THE EXISTENCE OF AN OPTIMAL STATIONARY PROGRAM

 An Optimal Stationary Program (OSP) is a stationary program which is optimal. In this
 section we will establish the existence of an OSP, and simultaneously provide a stationary

 "price support" property of such a program. This means that we will associate with the

 OSP a stationary shadow price vector such that the utility plus the value of various timber
 stands carried over, less the value of initial timber stands is maximized at the OSP among
 all feasible activities. Such a property is generally proved, in the literature on optimal
 intertemporal allocation under positive discounting (see, for example, Sutherland (1970),
 Peleg and Ryder (1974)) by applying a separation theorem on convex sets in finite-
 dimensional Euclidean spaces. Given the structure of our framework, we are able to
 provide a purely constructive proof, which has the advantage that we can identify

 immediately what the shadow prices are, in terms of the basic data (the production
 function, f, the utility function, u, and the discount factor, 8) of our model.

 To this end, we assume Assumptions 1 and 2 and consider the function, g, defined by

 g(a) = 8af(a)/[l - 8a] for l ' a 'N (3.1)

 Intuitively, g(a) is the discounted "value" of an infinite sequence of planting cycles with
 harvesting at age a, that is,

 g(a) = 8af(a) + 82af(a) +*

 Consider now the following problem (which can be referred to as the "Faustmann
 problem")

 maximize g(a)

 subject to a E [1, 2,5. .., N] (3.2)

 Clearly, there is an integer, M, such that

 (i) 1<M?N

 (ii) g(M) _ g(a) for a E [1, . . ., N] (3.3)

 Note that M> 1, since g(l)=O, while g(N)>0.

 To prove the existence of an OSP in our framework, we need the following additional
 notation.

 Denote [f(M)/M] by /8; u'(p) by a; P(a)=[(lI_a)5M-af(M)/(l-8M)] for a-
 1, ... ., N; P =[P(1), ... ., P(N)]; q = PB; p = atq; x=[1M, . .I., 1M, 0, 0, ..., 0] in D;
 o = (1/8).

 Lemma 3.1. Under Assumptions 1, 2, 4-6, if (x, z) is in F, then

 u[QB(Ax-z)]+pz-Opx _ u[3]+px- OpX. (3.4)

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 17:45:30 UTC
All use subject to https://about.jstor.org/terms
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 Proof: If (x,z) is in F, then B(Ax-z)=[x(O)-z(l),...,x(N-1)-z(N)]'O.
 Now, for a= 1,..., N, we have, by definition of M,

 Q(a) = f(a) _ P(a). (3.5)

 So, Q_ P. Using this information, we have

 QB(Ax - z) ? PB(Ax - z) = q(Ax - z) = qAx - qz. (3.6)

 Now,

 qA-Oq = [q(l),..., q(N), q(O)]-[0q(O), ... , Oq(N)]

 = [q(l )-Oq(O),..., q(N)-Oq(N-1), q(O)-Oq(N)]

 = [q(l), q(2)-Oq(l),..., q(N)-Oq(N-1),-Oq(N)].

 Now, q(l) =P(1); also, for a = 1, ..., N-1,

 q(a + 1) - Oq(a) =P(a + 1) - OP(a)

 (1-8_a?)8M-af(M) (1_8a)8Maf(M)
 (I1- M) '6(I -, M)

 8M-a- lf(M) [i - sa+1 - i + aa

 =M1f(M)(1 - = P(1).

 Thus, qA- Oq = [P(1), P(1), ... ., P(1), -Oq(N)]. Hence, qAx- Oqx=
 P(l)[x(0)+** +x(N- 1)]-Oq(N)x(N) = P(1). Using this information in (3.6),

 QB(Ax-z)+qz-Oqx? P(1). (3.7)

 Now

 A_'q A= _m _ M a1q(a) qx qx =a=O M _ 0 a M

 q(O) +M-2[q(a+1)-Oq(a)] Oq(M-1)
 M a=O M M

 FM-li OP(M -1)
 =- LMJ P(1)- M

 8M f(M)(1-6) (M -1 (1- 8M-)f(M)

 (I _ SM) m (I -, (-M) m

 Hence,

 A_0 { (I-m1) }]+{ 8 f1(M) fM }{ M -1)}

 = f(M){ s (1-_6) + {6 f(M)(I-8) }(M-1)

 =M'lf(M)(1 - 8)
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 270 REVIEW OF ECONOMIC STUDIES

 Using this information in (3.7),

 QB(Ax-z) + qz-Oqx '13+qx-Oqx&. (3.8)

 Using concavity and differentiability of u,

 u[QB(Ax - z)] ? u(,3) + a[ QB(Ax - z) -]. (3-9)

 Combining (3.8) and (3.9), we get (3.4).

 Remarks

 Some observations about the various magnitudes referred to in the proof of Lemma 3.1

 might be appropriate. When harvesting is done at age M, P(a) for a ' M is the "value"

 of land with no crop; that is

 P(a) = 8-a[6Mf(M)/(I -3M)]-[M f(M)/(I M )].

 It represents the advantage of being a years nearer the harvest. If a > M, P(a) is the

 "value" of a crop harvested (a - M) periods ago plus the "value" of land bearing a new
 crop (a - M) years on the way to harvest, less the "value" of land with no crop. Thus,

 P(a) = 8M-af(M) + 3-(a-M)[ 16f(M)] - [(1f(M)]
 [(I M)] [(I - M)]

 r-a t(I M)l _ r M)l
 In view of this, P(a + 1) - OP(a) is the "value" of being one year nearer the harvest as

 seen at the later date. It is independent of a, since the size of the stand of timber is

 irrelevant; thus for a = 1, .. ., N- I, P(a+ 1)- OP(a) = P(1).
 For some purposes, the following alternative price-support property will be useful.

 For this, however, we will use Assumption 3.

 Define q' in R N+ ' by: q'(O)=O, q'(a)=P(a) for a=1,...,M, q'(a)=f(a) for

 a = M+ 1, I .., N. Denote aq'byp'. Define P'=[q'(I),...,q'(N)].

 Corollary 3.1. Under Assumptions 1-6, if (x, z) is in F, then

 u[QB(Ax - z)] +p'z - Op'x_ u[,8]+p'- Op'X. (3.10)

 Proof. If (x, z) is in F, then B(Ax - z) _ 0. For a = 1, . . ., N, we have,

 Q(a) =f(a) '-P'(a). (3.11)

 So Q _ P', and using this information, we have

 QB(Ax - z) ? P'B(Ax - z) = q'(Ax - z) = q'Ax - q'z. (3.12)

 Now,

 q'A- Oq'= [q'(1) - Oq'(0), . . ., q'(N)- Oq'(N- 1), q'(0) - Oq'(N)]

 = [q'(1), q'(2) - Oq'(I), . . ., q'(N) - Oq'(N- 1), -Oq'(N)].

 Now, q'(1)=P(1); also, for a=1,...,M-1,q'(a+1)-Oq'(a)==P(a+1)-OP(a)=
 P(1), using the proof of Lemma 3.1. For a = M,

 q'(a + 1) - Oq'(a) =f(M + 1) - Of(M) < P(M+ 1) - OP(M)
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 MITRA & WAN ECONOMICS OF FORESTRY 271

 [since f(M + 1) < P(M + 1), and f(M) = P(M)] = P(1). For a =
 M+ 1, ... ., N -1, q'(a + 1) - Oq'(a) =f(a + 1) - Of(a)- Now, f(a + l)-f(a)_!~
 f(a) -f(a - 1) using Assumption 3. Hence f(a + 1) -f(a) < 0[f(a) -f(a - 1)] [since
 f(a)>f(a-1) for a=M+1, ..., N-1, and 0>1]. Thus, f(a+1)-Of(a)<
 f(a) - Of(a - 1). Hence, f(a + 1) - Of(a) <f(M + 1) - Of(M) for a=M +1, .I. ., N-1.

 So, q'(a+1)-Oq'(a)<f(M+1)-Of(M)<P(M+1)-OP(M)=P(1), for a=

 M+1 ...,N-1. Thus, q'A-Oq''--[P(1), P(1),...,P(1)-Oq'(N)]. Now, follow
 exactly the proof of Lemma 3.1 replacing q everywhere by q', and p by p', to get (3.10).

 Remark

 The alternative price support property of Corollary 3.1 is used in Theorem 4.2 below to

 show the optimality of a certain program when the utility function is linear. The role of
 Assumption 3 in the corollary and the Theorem is to ensure that trees do not grow too

 fast in some years for a > M. It plays no role in Theorem 3.1, where the more general
 price support property of Lemma 3.1 is used to prove the existence of an OSP.

 Consider the stationary program (x, 9) given by: x^(a) = (1/M) for a =

 0,1, ..., M-1; x^(a) =0 for a = M,N A, N; =A', and c^= B(9 - X). One can now use
 Lemma 3.1 to show that (x, 9) is an OSP.

 Theorem 3.1. Under Assumptions 1, 2, 4-6, (x^, ) is an optimal program from x^.

 Proof. Let (x,, Y,+i) be any feasible program from x. Then, for t ?, (x,, x,,?) is in
 F Hence, using Lemma 3.1,

 at-l(Qc) + 8t 1PX t-2pXt_ I at-l u(Qc) + tI Px-8 .t-2
 Hence

 [zt=1 8t u(Qct)-Zt=l 8 u(Qc )] X' pG-XT). (3.13)

 Since u(0) ' u(Qct) ' u(f(N)), so each sum in (3.13) converges as T-> oo. Also, as T-> oo,
 the right-hand side in (3.13) converges to zero (since xt is in D for all t). Hence,

 Et=l 8 u(c-=l ^'l(c^< (3.14)

 which shows that (x, 9) is an optimal program from x'.

 Remark

 Theorem 3.1 is not really a surprising result, in view of the general existence theorems
 on OSPs that are proved in the optimal growth theory literature. Note that under
 Assumptions 1 and 2, the production set is convex (the possible non-concavity of f having
 nothing to do with this feature). Furthermore, since u is concave, so in a "reduced"
 model with a utility function V defined on (x, z) in F, by V(x, z) = u[QB(Ax - z)], V
 will also be concave. Thus Theorem 3.1 is related to the general existence theorems in

 the optimal growth literature (see, for example, McKenzie (1982)). Its novelty is in the
 constructive nature of the existence proof, which is possible because of the model's special
 structure.

 It is of interest to know that the set of optimal stationary programs is invariant to a
 change in the utility function.
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 Theorem 3.2. Under Assumptions 1 and 2,

 (i) If (x, y) is an OSP for a linear utility function, then (x, y) is an OSP for every

 utility function satisfying Assumptions 4-6.

 (ii) If (x, 9) is an OSPfor some utilityfunction satisfying Assumptions 4-6, then (x, y)
 is an OSP for a linear utility function.

 Proof. The proof of statement (i) is quite straightforward. Consider any feasible

 program (xt, yt?I) from x. Then for every u satisfying Assumptions 4-6, we have for t _ 1,

 8t '[u(Qct)-u(Qc)]? 8t 'u'(QJ)[Qct - Qc]. (3.15)

 So

 Et=16t- [u(QCt)-u(Q0=Y__ [ t= IX at-l m[Qct - Qc]. (3.16)

 Since (x, y) is an OSP for a linear utility function, the right-hand side of (3.16) is
 non-positive. Hence the left-hand side of (3.16) is non-positive, which proves that (x, y)
 is an OSP for any u satisfying Assumptions 4-6.

 The proof of (ii) is by contradiction. Suppose (x,y9) is an OSP for some utility
 function, u, satisfying Assumptions 4-6, but not an OSP for a linear utility function.

 Then, there is some feasible program (xt, yt?I) from x, and ? > 0, such that

 Z0 8t-'m[Qct]ECT 1 8t'm[QZFc]+r (3.17)
 and

 00 t- lu[Qct] E>Z I 8'tu[QU]. (3.18)

 Note that [-u"(k)] is continuous on [Qcf(N)]. Hence, there is a number, U, such
 that [- u"(k)] c U for k in [2QZF,f(N)]. Choose 0 < A <, such that [Amf(N)2U/u'(Qic) x

 (1-8)] < E. Define x =kAx,+(l-A), y = Ax for t 0. Then (x', y'?1) is a feasible
 program from xc, and c' = Act+ (1-A)c- for t ' 1. Note that c't (1-A)I - 'A for t'-1.

 Now, for t 1, we have by Taylor's expansion, some et between Qc' and Qc such that

 u(Qc,)- u(Qc-) = U'(QZ-)(QC - Qe) +u"IU(et)(QC, - QC-)2

 or

 I2I_U,(et)](QC _ QZF)2 + [U (QC,t) U(Qc-)] = U,(Q-) (QC, _ qc)

 Qc' - QJ =AQct+(l -A)Qc- Qe = A[Qct- Qc]

 (Qc'- Qc)2= A2(Qct - QE)2? A22f(N)2.

 Also since c'Y_ 1c and c'-2cl, so et_ 1QE; clearly, et-,f(N). So I-u"(t)]? U. Thus,
 we have

 A2f(N)2U +[u(Qc,)_-u(Q-)] u'(Qe)(Qc, - Qc-)

 So

 Ak2f(N)2U 0 J.0
 t1( 86t-'[u(Qc't)-u(Q)]> (Q) = l 6t '- m[Qc' - Qc-]. (3.19)

 Since (x, y) is an OSP for the utility function u, so

 E t=l 8at [U(Qct) - u(QW)]?0. (3.20)
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 Using (3.20), and (Qc'-Qe) = A[Qc,-Qc-] for t' 1 in (3.19), we have

 Ak2f( N)2U U,( Qc )A 00 -I [c-c
 (18 - 5 m Y

 2u (QcU)AE
 m

 Thus

 -Af(N)2MU
 (l-8 )u'(Qc) (3.21)

 But this contradicts the choice of A.

 Remark

 The result of Theorem 3.2 is similar to that obtained in aggregative optimal growth models.
 In the general theory of optimal growth, where utility is defined as V(x, z) on beginning
 and end of period stocks which are technologically compatible (see McKenzie (1982))
 it is known that under some conditions if xt = x for t 0 O is an OSP then V(x, x) ' V(x, z)
 for all technologically compatible (x, z) satisfying 8z - x ? (8- 1)9. But, in our model,
 V(x, z) = u(QB(Ax - z)), and since u is increasing, the maximum of V is attained at a

 maximum of QB(Ax - z), irrespective of the precise form of u. This is the basic content
 of Theorem 3.2.

 4. LINEAR UTILITY FUNCTION AND THE FAUSTMANN SOLUTION

 When the utility function is linear, a rather complete description of optimal programs
 can be given. Let M be a solution to problem (3.2). Then, starting from virgin land, it
 is optimal to implement the following periodic policy. Let all trees grow upto age M,

 cut all of them down, and replant the entire forest with seedlings (age zero trees); repeat
 this process indefinitely. This, of course, is the solution concept proposed by Faustmann
 (1849) (Theorem 4.1). Note that problem (3.2) may have more than one solution; in this
 case, for each such solution (that is, each such M) the Faustmann periodic policy is an
 optimal one to follow. (For examples demonstrating the possibility of multiple solutions
 to (3.2), see Section 5.)

 If, initially, the land is not virgin, then the following policy is optimal: initially cut
 all trees of age at least as large as M. Thereafter, cut a tree iff it is of age M. Note that

 this amounts to saying that, after the initial period, each sub-plot of land (identified by
 the age of trees standing on it) follows a periodic Faustmann solution, with periodicity
 M (where M is a solution to problem (3.2)) (Theorem 4.2).

 Let M be a solution to (3.2), and consider the sequence (xi, Yt?1) given by:

 :Zo=d, x-t=Atd fort=l, .......... ,M-l;(41

 xt xtM fort_M; i:M=A; for+t=0A

 It can be checked that (xt, jY,1) is a feasible program from x = d.

 Theorem 4.1. Under Assumptions 1 and 2, the feasible program (Xt, 1+l) defined by
 (4.1) is an optimal program from x = d, if the utility function is linear.
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 Proof. For any feasible program (x,, Yt+i) from x = d, we have (x,-1, x,) in F for
 t_ 1. So, by using Lemma 3.1, we have, for t_ 1,

 6 -I[ QCj ]+6 t-IqXt _ 46t-2qXt_j-5 t-j[QA^]+ t-jq A_at 2qx A42 c qx qx- ~~~~(4.2)

 Using (4.2), we have for T_ 2

 Et-1 [ c,Q] 0[xqx] 8 qx -qXT]. (4.3)

 Using (4.3), and letting T-> o0, we have (since qx = 0),

 E t=l 8'-l [ c- Qc] qx (4.4)

 Note, next, that for t ' 1I

 ,6t-1Qjt+ ,6t-1q:t-_,t-2 qxt-I = 8'-1P(1). (4.5)
 Also, using Lemma 3.1, we know that for t ' 1,

 8t'Qc+8'qx -82qx= 6'-P(1). (4.6)

 Using (4.5), (4.6), we have for T'2

 E =1 [ c-Q] = [xqx] + qx q:ZT] (4.7)

 Using (4.7) and letting T-> oo, we have

 Et=l Qc Qc = qx- (4.8)

 Combining (4.4) and (4.8) yields the desired result.

 Remark

 Note that the optimal program (it, -t+?1) from x = d, does not converge to the optimal
 stationary program (, 9) [which is an optimal program from x = ]. Thus, we do not
 have a "turnpike property" when the utility function is linear. However, it is easy to

 check that the optimal program (it, j7,,) from x = d does satisfy an "average turnpike
 property"; that is

 lim TOo [1( t=0 ot)/ T] = x (4.9)

 where (, 9) is an OSP, corresponding to the same solution, M, of (3.2) as was used to
 construct the program (it, 9t+?).

 We now consider the case in which x is an arbitrary vector in D. Let M be a solution
 to (3.2), and w be the M-th unit vector in RN. Define an (N+ 1) x(N+ 1) matrix C as
 follows:

 [= IN 0-

 Consider the sequence (x', y'?+) given by:

 xO=x x'(a)=x(a-1) fora=l, ...,9M-1I

 xl(a) = 0 for a ' Mg xl(0) =a=M x(a - 1)

 x/ = [CA]tx'l for t = 2, ... , M + (

 X>X>M for t'M+2; Yt+1 =Ax' for t_
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 It can be checked that (x', y+,I) is a feasible program from x. We will show that (x', yt+,)
 is an optimal program from x.

 Theorem 4.2. Under Assumptions 1 and 2, the feasible program (x , y?i 1) defined by
 (4.10) is an optimal program from x in D, if the utility function is linear.

 Proof. First, note that

 u (Qc') + p'x - Op'x = p'Ax-Op'x (4.11)

 and for t -2,

 8t1u(Qc')+ 't-'p'x - 8t-2p'x>_' = P(1)8'`. (4.12)

 Let (xt, yt+,) be any feasible program from x. Then,

 u(Qc1)+p'x,-Op'x 'p'Ax-Op'x (4.13)

 and for t ' 29 by Corollary 3.1

 8t-1u(Qct)+ 8t- p'Xt - 't-2p'X, _ P(1)8'- . (4.14)

 Using (4.11)-(4.14), we have for T' 1,

 zt=1 8 [u(QCt)-u(Qct)] 8Tp'[XT-XT]- (4.15)

 Using (4.15), and letting T-> oo yields the desired result.

 Remarks

 (i) In order to clarify the description of the optimal program (given by (4.1) and (4.10)),
 we present below a simple example. Suppose M =3 and N =4. Let x = (1, 0,0, 0, 0);

 this is the case in which initially the land is virgin. In this case, an optimal program is

 given by x, = (0, 1, 0, 0, 0), x2= (0, 0, 1, 0, 0) X3 =X; Xt = Xt_3 for t> 3. This is what (4.1)
 describes. On the other hand, suppose x = (3, 6, 2, 0, 0). This is a case in which initially

 there is a standing forest on the land. Then an optimal program is given by x l = (9, 3, 6, 0, 0),
 X2 = (6, 2, 3, 0,0 ), x3 = X, Xt = Xt-3 for t > 3. This is what (4.10) describes.

 5. THE UNIQUENESS OF AN OPTIMAL STATIONARY PROGRAM

 In Section 3, we established the existence of an optimal stationary program. More

 precisely, we showed that if M is a solution to the maximization problem (3.2), then
 x(a) = (1/M) for a = 0, 1,..., M - 1, x(a) = 0 for a = M, ..., N; y = Ax, constitutes an
 optimal stationary program. Thus, if problem (3.2) has two solutions, there will be an
 OSP corresponding to each of these solutions. Consequently, the problem of non-

 uniqueness of an OSP will definitely arise when (3.2) has multiple solutions. We provide
 an example of a production function which satisfies Assumptions 1 and 2, but violates
 Assumption 3, for which (3.2) has two solutions (Example 5.1). One might be inclined

 to conjecture that in the context of our model with concavity of f, the uniqueness of a
 solution to (3.2) can be proved. (It is known, of course, in the general theory of optimal
 growth, that non-uniqueness of OSPs can arise with concave utility functions and convex

 technology sets, when future utilities are discounted.) However, remembering that the
 domain of maximization is a set of integers, this assumption does not really help. We

 show this with a second example, in which the production function satisfies Assumptions

 1-3, but (3.2) still has two solutions (Example 5.2).
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 The question that arises next is the following: if problem (3.2) has a unique solution,
 will there be only one OSP? One should notice that the answer is not immediate. However,

 by relying on some of the results in the previous two sections we are able to answer the

 question in the affirmative (Theorem 5.1).

 Example 5.1

 Define +(a)=3[1 - a]/5a for O a N; let 8=2. Define +if(a)= a - a2- (39/4), for
 O' a '- N.

 (25/4)-
 (21/4)

 (9/4)?L

 O I 3/2 2 3 4 a

 FIGURE 2

 Note that is a convex function, and qi a concave function. Also, +(2) =i (2) 924;
 0 (3) = q(3) = 2. Hence, for O' a < 2, and for a > 3, +j(a) < + (a). Define

 f(a) =o forO' a-' 32

 = +(a) for3' a _ 2

 = +(a) for2' a '-- 3

 = +i(a) for a'3.

 Then notce tat N= 4,and we have g(l 0 -O g(2) = 34 g(3) =34, and g(4)=

 '64 4)/(l _ - 4) < 64(k(4)/(l _'4) =3. Hence Problem (3 .2) has two solutions, namely 2

 A 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 and3. onsquetly xA (2,,,?? an 33300) constitute two optimal stationary
 programs in this framework. Notice that f satisfies Assumptions I and 2 but violates
 Assumption 3.

 Example 5.2

 Define 0, qi and 5 as in Example 5. 1.
 Define

 f(a) =o forO'-- a _32

 = +i(a) for a - 32

 Again, notice that N-=4, and we have g(1)-=O0,g(2) 3, g(3) 3. and g(4)< 3. Hence

 Problem (3.2) has two solutions, 2 and 3. Consequently, again x^ = (2,2,?,?,?9 ) and
 3X =3,3,3,09,0) are two OSPs in this framework. Notice that f satisfies Assumptions 1-3.

 To prove our uniqueness theorem, we assume that
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 Assumption 7. There is a unique solution, M, to Problem (3.2).

 Consider now the utility function u(k) = k for k 0 O. Under Assumptions 1-3, and
 7, we know that (x,9) is an OSP, where x(a) = (1/M) for a =0, 1,..., M- 1; x(a)=0

 for a = M,..., N. For (x, z) in F, define 77(X, z)
 {/ +p'x- Op'x} -{[QB(Ax-z)]+p'z-Op'x}. (To be sure, in this case, p' = q'.) By Corol-

 lary 3.1, we know that 71(x, z) ' 0.

 Lemma 5.1. Under Assumptions 1-3, and 7, if (x, x) is in F, and rq(x, x) = 0, then
 X =X.A

 Proof. Using the method of proof of Corollary 3. 1, we know that 77 (x, x) = 0 implies
 that QB(Ax-x) = q'(Ax - x), by using (3.12).

 Now

 QB = [0, f(l), f(2), . .*, f(N)],

 q'=[0, P(l), P(2), . . ., P(M),f(Mi+ 1),... ,f(N)]

 and Ax-x=[-xo,xo-xl,..-,XN-2-XN-1,XN-1]- Also, f(a)<P(a) for a=
 1, ... ,M-1,so

 x(a-l)-x(a)=0 for a= 1 ... , M-1. (5.1)

 Also, using the method of proof of Corollary 3.1 (together with that of Lemma 3.1) we

 know that 77(x, x)=0 implies that (q'A-Oq')x=P(l). Now q'A- Oq'=
 [q'(l), ... , q'(N)- Oq'(N- 1), -Oq'(N)] and q'(a+ 1) - Oq'(a) < P(l) for a =
 M,...,N-1. Hence

 x(a)=O fora=M,...,N-l. (5.2)

 Combining (5.1) and (5.2), we get

 x(a)=(1/M) fora=0,. ..,M-I. (5.3)

 Using (5.2) and (5.3), x = x. jj

 Theorem 5.1. UnderAssumptions 1-7, (^, 9) is the unique optimal stationary program.

 Proof. By Theorem 3.1, (, 9) is an OSP. To prove that it is the only one, suppose,
 on the contrary, that there is another one (distinct from (^, 9)), call it (x*, y*).

 By Theorem 3.2, (A 9) and (x*, y*) are OSPs for the utility function u(k) = k. By
 Theorem 4.2, the feasible program (x', y'? I) defined by (4.10), with x replaced by x*, is
 optimal from x*. Now, for t = 1, using the proof of Theorem 4.2,

 [5t1 QC + 85tpxI - t-2p,X_1] _ [t-l QC* + .t-lpX* _ 8t-2p,X*] >0O

 Also, for t > 1,

 [8t1 QCI+ 8t pIX-st-2p,X,1]_1-[8t-1Qc*+ 8t-lptX* _ t-2ptX*]

 = [t1 Qc+ t'p't t-

 -t8'w(X1_I,X,)_[8t-'QCA+ 8t-pA_- t-2p'A]+ t-l(x*, X*)

 = 8t-l[(x*, x*) - 7(xt-i, xt)].
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 Hence for T> 1,

 ET-1 8t (Qc-Qc ) =Zt2 8l[t(x x - )-(xt1, xt]+ 8Tp X 8 p XT.

 Hence, we have, using the fact that (x*, y*) is an OSP

 o?-Et=l 8'l[Qc - Qc*]>tt28'tl[y7(X*, X*) - '?(X->1 X9)].

 Note from the proof of Theorem 4.2 that -(x>1, x9) = 0 for t '-2. Hence n(x*, x*) =0.
 This means, by using Lemma 5.1, that x* = x. But then (x*, y*) is not distinct from (x, y),
 a contradiction. This establishes the theorem.

 6. STRICTLY CONCAVE UTILITY FUNCTION AND ASYMPTOTIC
 PROPERTIES OF OPTIMAL PROGRAMS

 In Mitra-Wan (1981), we had shown that when future utilities are undiscounted, and the
 utility function is strictly concave, an optimal program from any initial situation would
 converge to a unique optimal stationary program (called the "golden-rule"). Thus, in
 the undiscounted case, there was a clear qualitative difference in the asymptotic behaviour
 of optimal programs, depending on whether the utility function was linear or strictly
 concave. If initially the forestry land was virgin, optimal programs would follow a periodic
 Faustmann solution, when the utility function was linear, but would converge to the
 golden-rule solution, when the utility function was strictly concave.

 When futurd utilities are discounted we have seen that the Faustmann periodic
 solution is optimal, when the utility function is linear (Theorems 4.1, 4.2). Thus, for the
 case of the linear utility function, the results for the undiscounted case are preserved in
 the discounted case.

 However, for a strictly concave utility function, the results of the undiscounted case
 do not carry over to the discounted one. There may be two optimal stationary programs
 (Examples 5.1 and 5.2) and in this case, there is clearly no chance of proving a global
 asymptotic stability result for optimal programs.

 If we suppose that problem (3.2) has a unique solution there will be a unique OSP
 (Theorem 5.1). We proceed in this section, under this set-up (i.e. assuming Assumption
 7). Can we now show that optimal programs will converge to the unique OSP? The
 answer is in. the negative. First, we provide an example (Example 6.1 below) in which,
 starting from virgin land, an optimal program follows the periodic Faustmann solution,
 even though the utility function is strictly concave.

 A second example (Example 6.2) shows that, even if the land is not initially, virgin,
 an optimal program could be periodic, with the utility function strictly concave.

 The examples demonstrate, we believe, ample evidence of periodic optimal programs,
 when the discount factor is less than one and the utility function is strictly concave. This
 is in contrast to our result in Mitra-Wan (1981) for the undiscounted case, where optimal
 programs converge to the optimal stationary program, when the utility function is strictly
 concave.

 In a sense, our examples are not really surprising in view of the recent literature on
 global asymptotic stability of optimal programs when future utilities are discounted (see
 McKenzie (1979) for'a survey), which suggests that the "turnpike property" may hold
 only if the discount rate is "sufficiently small" (for continuous as well as discrete-time
 models). However, the intertemporal model we are dealing with has much more structure
 than those used in this more general capital-theoretic literature. Kemp and Moore (1979),
 in a continuous-time model of the forestry report results of special cases in which the
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 "turnpike property" of optimal programs will hold, when the utility function is strictly
 concave and future utilities are discounted. Although our framework is a discrete-time

 one, we feel that our examples show that "turnpike property" of optimal forestry programs
 cannot be a general phenomenon with a strictly concave utility function, and positive
 discounting.

 Example 6.1

 Letf(a)=0 for 0 al, and f(a)=30a-5a2- 25 for a> 1.

 Note thatf'(a) = 30- 10a for a '-1, so thatf'(3) = 0, and so N = 3. Alsof(l) = 0,f(2) = 15,
 (3) = 20. Let 8 = I, and u(k) = k/[l + hk], where h 1=Aij

 It is easy to check that x^= (2,4 , 0, 0), 9=Ax^, constitutes the unique OSP in this

 framework. This can be done by showing that

 u(Qc)+p'x- Op'x= u(Qc)+p'z- Op'x

 for all (x, z) in F, with p'= u'(5) [0, 3, 15, 20], so that xA is an OSP. Also, the only other
 stationary programs are (x, y) and (y, 5) given by xZ = ( 1, 0, 0, 0) and y = Ax, x = (3,4 ,4 , 0)
 and = Ax. These are clearly not optimal programs.

 We will now show that (x,, Yt+i) given by x, = (1, 0, 0, 0) for t even, xt = (0, 1, 0, 0)
 for t odd, yt, = Ax, for t _0 is an optimal program from x = (1,0,0,0). Denote x* =
 (1,0,0,0), y*=(, 1,0,0), c*=(0,0,0), z*=(0, 1,0,0); x**=(O, 1,0,0), y** =
 (0, 0, 1, 0), c** = (0, 1, 0), z** = (,0, 0, 0). Define p* = (?, 151, 15 20); p** = (0, 1815,120).

 We will now show that for all (x, z) in F,

 u(Qc) +p**z - Op*x? u(Qc*) +p **z* - Op*x* (6.1)

 and

 u(Qc) +p*z - Op**x ?u(Qc**) +p*z**- Op**x**. (6.2)

 To prove (6.1), let (x, z) belong to F. Then

 u(Qc) +p**z* - Op*x = ([15C2+2OX2]/[l + h{l5c2+ 20x2}])+ +8[XO- cl]+ 15[xl - c2]

 -4[{45xl + 2X2]

 C1 5c2+ 20X2 + 85xOc- c85 C+1 5XI-15C2-15xI-30X2

 C8 XO - 8 CI8 XO <8

 Also, note that u(Qc*) + p**z* - Op*x* = - +5 -0 = 85 This establishes (6.1).
 To prove (6.2) let (x, z) belong to F. Then,

 X--=u(Qc) + p*z- 0p**x

 = ([15C2+20X2]/[ l+h{1l5C2+20X2}]) + 4(Xo- C) + 2(X1 - C2)- 4[L85xl + 1+5X2]

 _ {15C2/[l + 15hc2]}+20x2+ '45XO- 1C1 + 125XI 125C2- 125X1 -6OX2

 -{15c2/[l + l5hC2]}+ 145Xo- 125C2

 NowO0_ Z2 = X1-C2, SO C2-Cx and -c2_-xi. AlsoxO+X1+X2+X3 = 1, SO X0o1-XI-
 - c2. Hence

 ir C{1 5c2/[l + 15hC2]}+ 145 - 145 C2 2 C2

 ={15C2/[1 +8C2]}-4 C2+ 145'
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 Now, j(k) = {1 5k/[1 + 'k]} - 44k + ' is increasing on the interval [0, 1], since

 j'(k) = {15/[1 +k]2} -45 15/[8]2}- 45 = 15[64 -] > 0 for k in [0, 1].

 Hence, T '-{15/[1 + 1]}-45+ l45 = 35 Also, u(Qc**)+p*z**-Op**x* =
 {15/[1 + ]}+0-4( 5) = 35. This establishes (6.2).

 To show that (x,, Yt+i) is optimal from x = (1, 0, 0, 0), we define

 pt = 6t-lp* for t even; Po=Op (6.3)

 Pt= - t-lp** for t odd.

 Then, using (6.1), (6.2), we have for (x, z) in F, and t_ 1

 ,6t-'u(Qc) +ptz -pt_lx ' <6t'-u(Qct) +ptxt -Pt_lxt_1. (6.4)

 Let (x', y'+i) be any feasible program from x =(1, 0, 0, 0). Then (x', x't+) is in F for
 t 0. So using (6.4) we have

 T=1 8'tl[u(Qc't)-u(Qct)] <PT[XTXT]-xPTXT-
 Since PTXT ->O as T -> oo, so

 6t=L 8t'[u(Qc')-u(Qct)]>0o.

 Hence (xt, Yt+?) is optimal from x. Note that (xt, yt+?) does not converge to the optimal
 stationary program (x, 9) as t -> oo.

 Example 6.2

 Letf be defined as in Example 6.1. Let 5=4 and u(k)=hk-Hk2 for 0-'k-'20, with
 h=4 and H = 25 = (h/60). Note then that u'(k) > 0 and u"(k) < 0 for 0 _ k _ 20.

 As in Example 6.1, there is a unique OSP, given by x = (1, L 0, 0), 9 = Ax.
 We will now show that (xt, Yt+i) given by xt = [i, 3, 0, 0] for t even, and xt = [4, s, 0, 0]

 for t odd, Yt+I = Axt for t _ 0, is an optimal program from x = [4, 4, 0, 0].
 Denote x* =s , 0, 0], y* = [0,4, 1, 0], c* = [0, 4, 0], z* = [54 1, 0, 0]; x** = [4, 1, 0, 0],

 y ** =[0, 4, ,0 0], C = [0 , 0], Z* = 140 . Define p* = [0 0 4], p** = [0, 45, 12, 4].
 We will show for all (x, z) in F,

 U(Qc) +P**z - Op*x U(Qc*) +p**Z* - OP*X* (6.5)

 and

 U(Qc) +P*Z - Op**x ? U(Qc**) +p*Z** - OP**X**. (6.6)

 To prove (6.5), let (x, z) belong to F Then,

 r =u(QC) +p**Z-9p*x = h[15C2+20x2]-H[15C2+20x2]2

 + p 1* (xO c1) + P2*(xi - c2) - OP X1 - OP2*x2

 = 15 hC2 + 20hX2 -225 HC2 - 225(20)2X2 + P**Xo - p** c

 +P P** XI-P ** C2 - P lX I- P 2* X2

 2 2

 '4c2- c2+px** -p*c1 +p2**xi p**c OP1

 =4c2_-2 + x**x + p X**x -9X c2

 '= 4C2-C2-1 p2**c = 4c2- 2 12+ 45-

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 17:45:30 UTC
All use subject to https://about.jstor.org/terms



 MITRA & WAN ECONOMICS OF FORESTRY 281

 Now, j(k) = 4k - k2_ 1-2k attains a maximum at k = 4. Using this,

 X'4(4)-_(s)-2_ + 4 36 5T~ ~5 25+ 525.

 Also, note that

 u(Qc*) +pz-**z*-Op*x* = 4c2*- (C*)2+p**5 op*4

 =4(4)()2 + (4s)- 32 (s) 36
 '15k5J '5 5 5 5J 25-

 This establishes (6.5).

 To prove (6.6), let (x, z) be in F. Then,

 X = u(Qc) +p*z- 9p**x = h[15c2+ 20x2]-H[15c2+ 20x2]2

 +p*l(XO-C1) +p2*(Xl-C2)-Opi**X - 2Op*X2.

 '4C2_ 2 - +pi x0-pi C, +p2 XI -Pc2- OpIXI

 '=-4C2- 2 1 lX0-P2 C2+PI XI

 '4c -c2+pp*-p* c2+ C2+2 24c 1 82

 Now, j(k) =4k - k2 _ 18 k is maximized at k = I. Using this,

 gr'4() _(s)2 + 2-s 8(s)
 1 1

 25

 Also, note that

 u(Qc**) +p*Z* *- *X = 4c** (C**)2 + (4) (4)2 I I

 This establishes (6.6).

 Now, using exactly the method in Example 6.1, it can be verified that (x,, yt+,) is an
 optimal program from x = [, 4, 0, 0], by exploiting the results (6.5) and (6.6).

 First version received January 1982; final version accepted October 1984 (Eds).

 In preparing this manuscript we have benefited from comments by Partha Dasgupta, David Easley, Murray
 Kemp, Nicholas Kiefer and a referee. Research of the first author was supported by a National Science
 Foundation Grant, an Alfred P. Sloan Research Fellowship, and a grant from Resources for the Future.
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